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HEAT TRANSFER CONTROLLED BUBBLE GROWTH
IN'A SUPERHEATED LIQUID DROPLET

K. Suresh and C.T. Avedisian =

Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853

Bubble growth within a volatile superheated liquid droplet (liquid1) vaporizing in a hot nonvolatile immiscible liquid
(liquid2) is analyzed by solving the coupled energy equations for the temperature fields in liquids 1 and 2. A numerical
solution of the governing equations was obtained for a two phase droplet modelled as a vapor bubble growing from the
center of liquid1. It is shown that when the physical properties of liquids 1 and 2 are appreciably different, the droplet
vaporization rate can be dramatically increased or decreased when the thermal boundary layer extends into liquid.

INTRODUCT ION

Previous work on bubble growth within
1iquid droplets has focussed on the effect of
the droplet on the flow and heat transfer
processes in the external field 1liguid
f1-5]. Concomitant processes within  the
droplet interior were neglected. The present
work takes into account the effect of the
velocity and temperature fields both within
and exterior to the droplet on the temporal
variation of the bubble and droplet radii.

FORMULAT ION

We consider a single stationary spher-
jcal droplet of initial radius S5 of the
vaporizing Tiquid (1iquidl) suspended in a
stagnant field Tiquid (1iquid2) of infinite
extent. We assume (1) the two liquids are
mutually immiscible, (2) the pressure is
everywhere uniform at P, (dynamic effects
are thus absent), (3) the entire system is
initially at a temperature Ty which corres-
ponds to the homogeneous nucleation temper-
ature of liquidl at P,, (4) viscous effects
are negligible, and (%) all thermophysical
properties are constant.

At time t=0 a vapor bubble is formed
spontaneously by homogeneous nucleation at
the center of the droplet (see Figure 1).
Experimental evidence [1,6] has shown that
when as 1ittle as 10% of the mass of organic
liquid droplets has vaporized, and the liquid
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Fig. 1. Geometry of the proposed model.
to vapor density ratio is large enough
(Tp$.95), liquid surrounding the droplet
essentially exists in the form of a thin
film. In this event any effects of eccentri-

city of the vapor bubble on its growth rate
will be minimal. The temperature within the
vapor bubble is assumed to be uniform and

-equal to the saturation temperature, Tg, of

liquidl at pressure P,. The temperature
difference between the vapor and the ambient
liquid phase causes a flow of energy into the
bubble. This energy provides the heat to
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vaporize the droplet, and the bubble then

begins to grow.

GOVERNING EQUATIONS

The temperature field in the two liquid
phases is governed by the following form of
the energy equation [7]:

ca L e iy
T p2-9r ar p2 ar

where i=1 for R<r<S, and i=2 for S<r<w,

The boundary and initial conditions to
complete the formulation of the problem are
the following:

T,(0,r) =T,(0,r) = T0 (2)
TLR,E) = T (3)
Tl(sst) = Tz(s,t) (4)
aT 3T
1 _ 2
kl B_Y-:— r=S k2 EV‘— r=S (5)
Tz (oo,‘t) = TO (6)

where T, 1is the 1imit of superheat of
1iquidl at the pressure Py (e.g., [8]).

In the present model, the growth of the
bubble 1is completely controlled by the rate

of heat transfer to the vapor/liquidl
interface. A heat balance at this surface
yields:
oT o
Ky —  =p h. R (7)

METHOD OF SOLUTION

We adopt a coordinate transformation
similar to the one suggested by Duda et al.
[9], generalized by Saitoh [10], and
subsequently used in connection with melting
and freezing problems [11-13]. This
transformation immobilizes the boundaries at
fixed coordinate values in the transformed
space. The variable transformation is

r-R(t) z
B, =t 8)
" STER(T) ' (
Eq. 9 fixes the two moving boundaries at n=0

(vaporl/liquidl interface) and n=1
{1iquidl/Tiquid2 interface).
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The following non-dimensional gquantities
are now introduced

T-T s . RS
T = __i_ r = _;__ R = _§_ R' = __o_
ToTs 0 0 %1
- tal
t = T Y = (!2/0.1 z = kz/kl (9)
S
0

Together with the co-ordinate transfor-
mation (Eq. 9), the energy equation becomes:

aTi ) ) aTi
A, (n,t) — = S [B;(n,7) —
T(n v 3T an [ it an ]
aTi
- Di(n9t) o (10)
an
with
Ayln,) = F2(5-R)/d,
_ =2 15§
B.i(ﬂ,T) =7 /(S—R)
-3,22 =2,°=2
D(n,7) = [oR2 + E_l§§:EE_J:I;J R/d, (1)

§°(5-R)

where i=1,2, d;=1 (0<n<l) ,

dy=y (0<n<) ,

and r =n(5-R)+R
The transformed initial and boundary
conditions are:
fl(n,O) = fz(ﬂ,o) =1 (12)
T,(0,7) = 0 (13)
T, (1,7) = T,(1,1) (14)
of o
1 =z g (15)
an n=1 an n=1
Tole,7) =1 (16)
Finally, the interface heat balance 1s
transformed to
. ot
L ggé (17)
A AL
(SR g
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where Ja is the Jakob number defined by

- Cp1(ToTeley

Ja (18)

Pyheg
Four non-dimensional groups control the
radius-time history of the bubble: Ja,e,v,z.

The coupled energy equations for liquidl
and liquid2z were solved simultaneously by
finite difference methods. A Crank-Nicholson
method was used to simultaneously integrate
the energy equation (Eq. 10) and the inter-
face equation (Eq. 17) at each time-step to
obtain the temperature field and the bubble
radius as functions of time.

The droplet radius was then obtained
from the bubble radius by a mass balance as

§ = (1+e%)13 | (19)

Further details of the numerical procedure
may be found in [14].

Bubble growth is assumed to stop when
liquidl s completely vaporized. At this
time the radius of the bubble (and "droplet")
is then given by

R (20)

£ =
RESULTS AND DISCUSSIONS

. Calculations were performed for a vari-
ety of combinations of the four parameters
Ja, e, v and z. Most liquids of dinterest
have ¢ very close to 1 for reduced tempera-
tures of interest and all calculations pre-
sented here are therefore for e»>l. The
ranges of variation of the other parameters
were chosen to correspond to properties typi-
cal of hydrocarbon-glycerine and hydrocarbon-
water combinations. °

Figures 2 and 3 show bubble radius as a
function of time for Ja = 10 and ¢ = 0.995
with either vy (Fig. 2) or ¢ (Fig. 3) as a
pamameter. ..The most significant feature of
the results shown in these figures is that
all curves .are identical up to some particu-
lar time (7=0.01) and then differ beyond this
time. This result can be explained using the
concept of a thermal boundary 1layer which
surrounds the bubble, and within which the
temperature changes from Tg to T,. The
temperature field outside this boundary layer
is almost unperturbed from the initial con-
dition. As the bubble grows, the thermal
boundary layer propagates outward from the

n

interface, approaches the
-interface, and then

Tiquidl/vapor
1iquidl/Tiquid2

K Y Y S Y VAR Y Y 08
T=1a/S,

Fig. 2. Temporal variation of bubble radius
with time illustrating the effect of
v{z=1) for Ja=10, €=0.995
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Fig. 3. Temporal variation of bubble radius

with time i1lustrating the effect of
z{y=1) for-Ja=10 and e=.995.

penetrates into liquid2. Before this pene-
tration occurs, the field liquid has no ef-
fect on bubble growth since its temperature
remains at the iwitial value, and the bubble
grows in a manner identical to its growth in
an infinite medium of liquidl. Previous a-
nalyses for bubble growth in an infinite med-
jum (e.g., [7]) may thus be applied to des-
cribe bubble growth in the finite medium of
the liquid droplet during this initial peri-
od. Only when the thermal boundary layer
penetrates into 1iquid2 do field 1iquid pro-
perties, and hence the finite mass of the va-
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porizing liquid, affect the heat transfer and
bubble growth rates. This fact is reflected
in the various growth curves which fan out as
shown in Figures 2 and 3.

2 3f 1
2k J
| .
0 1 1 1 1 1 i 1 !
4] 0.8 1.6 24 3.2
T(Hd”=€§~
Fig. 4. Temporal variation of bubble radius
for Ja=100 and €=.995. A1l ranges
of vy and z. .
For Ja=100, Fig. 4 reveals that the

thermal boundary layer remains entirely with-
in the droplet throughout vaporization of
liquidl since the properties of liquid2 do
not affect growth. This qualitatively sup-
ports an earlier simplified model [6] for
bubble growth within a 1iquid droplet at high
superheats. The unique growth curve in
Fig. 4 is therefore identical to vapor bubble
growth in an infinite medium of liquidl. In
addition, as Jakob number increases the bub-
ble grows faster (compare the time scales in
Figures 2-4) as would be expected due to in-
creased heat transfer to the bubble attendant
to a larger difference in temperature between
TQ and TS'

The variation in temporal variation of
radius shown in Figs. 2 and 3 for 72.01 with
field liquid properties illustrate the poten-
tial impact of the field 1liquid on bubble
growth rate. may be dramatically increased
(high z or low y), or decreased (low g, high
v) as a result of penetration of the boundary
layer into liquid2. This fact could have im-
portant implications with regard to the vapor
explosion problem.

When the thermal boundary layer reaches
the 1liquidl/liquid2 interface, the radius
grows more rapidly for smaller values of v as
shown in Figure 2. A value of y less than
one implies that the thermal diffusivity of
liquid2 is smaller than that of 1iquidl.

This causes the thermal boundary layer to
grow more slowly in liquid2 than in liquidl,
thus causing temperature gradients to be
higher everywhere compared to the infinite
medium case (y=1). From Equation (17) it can
be seen that this leads to an increased bub-
ble growth rate. A reversal of this trend is
observed for values of y greater than 1.
Physically, a lower value of y for a constant
value of ¢ means that the heat capacity per
unit volume, pyCp2 of liquid2 1is greater
than plcpl. This implies that a given vol-
ume of liquid2 can supply more heat than an
equal volume of liquidl. This tends to in-
crease the rate of bubble growth as shown in
Figure 2.

Figure 3 shows the effect of varying ¢
on bubble growth. Here again the different
curves are identical until the thermal bound-
ary layer reaches the bubble wall. Beyond
this time, a higher ¢ 1leads to a higher
growth rate. A higher value of ¢ means a
high thermal conductivity for 1iquid2 com-
pared to liquidl. Temperature gradients
within 1iquid2 are then relatively smaller so
that most of the temperature rise takes place
within the thin layer of liquidl surrounding
the bubble. The attendant increase in the
temperature gradient then increases the
growth rate of the bubble. Interpreted
physically, a higher thermal conductivity for
liquid2 causes a higher heat transfer rate to
the bubble, thus increasing the growth rate.

AIChE SYMPOSIUM SERIES

1.0 r—t e —
3 [

Tz
- 0.00!
08 0.002
0.003

0.004
o 06 0.0075

S ’_o L 0.010

1"
- 04

0.2

1

0 1 i L i : 1 1 1
0 0.2 04 0.6 0.8

Bubble Liquid 1/ Liquid 2

wall m interface

Fig. 5. Temperature profiles within the
droplet (0<n<l) at early times for
Ja=10, e=1, vy=1 and z=5.

Figures 5 andv6 show representative tem-
perature fields in the droplet and ambient
liquid at various times. Figure 5 essen-

1.0
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tially illustrates the evolution of the ther-
mal boundary layer (T+1) in the droplet

1.0 LI > 5T 6r T T T
0.004,
0.006 0.010
08} » i
0.015 .
v 06 - 0.020 -
7] Laad
Fla
- -
": 04 =
0.030
0.2 -1
0.040 .
0 i 1 1 1 4 1 L 1 L
0 02 04 06 08 /I.O 1.2 1.4 1.6 18 30
Bubbie Liquid | /Liquid 2 )
wall interface
Fig. 6. Temperature profiles within and

outside (n>1) a droplet at various
times for Ja=10, e=1, y=1 dnd ¢=b.

(0<n<l) at various times. The temperature
field here is identical to the temperature
field which would be obtained for a bubble
growing in an infinite medium of liquidl. At
later times (F1gure 6) the thermal boundary
layer extends into Tiquid2 (T<l when n>1).
The field 1liquid temperature then begins to
drop, as expected, thus giving rise to heat
transfer between the ambient and 1liquidl/
liquid2 interface. This is manifest by a
temperature gradient in the field Tliquid
(n>1). For conditions of the calculation ap-
pearing in Fig. 6, the liquidl/liquid2 inter-
face temperature gradient in the droplet (0<-
n<l) is higher than the corresponding temper-
ature gradient in the field 1liquid ({(n<l).
This fact is consistent with Equation 18.

For sufficiently long times, the temper-
ature gradient in Tiquidl becomes essentially
linear as shown in Fig. 6. This result is
consistent with the extreme thinnéss of the
1iquid layer surrounding the vapor bubble at
these later times (while 0<n<l, S-R+0 at <=

.02). This fact could lead to a simplified
analysis for bubble growth which obviates the
need to include the full energy equation
governing the temperature field in liquidl--
Eq. 1--and assumes outright a linear tempera-
ture field within the droplet. However, it
is clear from the present analysis that the
assumption of a linear temperature field in
Tiquidl could generally Tlead to serious
errors in computed bubble growth rates.
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, As liquidl evaporates both the internal
vapor bubble and the droplet (as a whole)
expand. Evaporation is complete and the solu
tion terminated when R>S (Figure 1). Figure
7 illustrates the temporal variation of both

and R for Ja = 10 for one representative
set of parameters. When the curves describ-
ing the evolution of S and R intersect, the
droplet is completely vaporized. The

6____I__.J_L]l_ 5 I S S — S ————
§f
5
4
S,R
3
Droplet
radius
S
Bubble
! radius
R
o} 1 1 1 | 1 i 1 ! 1 | ' '
0 0.0t 0.02
T=1a/SE
Fig. 7. Relationghip between the droplet

radius (S5) and bubble radius (R)
during growth for J=10, £=.995, y=1
and z=5.0.

size of the final vapor bubble--the point of
termination of the solution--is determined
from an overall mass balance (Equation 20),
and depends on e. The solutions shown in
Figures 2 to 4 and have been carried to this
bubble size and then terminated.

The temporal variation of bubble radius
(e.g., Figs. 2 and 3) will eventually appro-
ach the classical asymptotic result

R~

where n=1/2 if 1liquidl does not completely
vaporize beforehand. This fact is illustra-
ted in Fig. 8 where the calculations of Fig.
2 for y=.2,1, and 5 have been re-plotted on a
logarithmic scale to more clearly display the
slopes involved. ' As long as the thermal
boundary layer remains within the confines of
the droplet, the bubble grows as if it were
in an infinite medium of liquidl. When the
thermal boundary layer penetrates into 1lig-
uid2, n may be larger or smaller than 1/2 as
shown in Fig. 8. When y>1, the temperature
gradient in 1iquid2 is Tlarger than the cor-
responding gradient in liquidl. The growth
rate decreases compared to the infinite
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medium case and n<l/2; the opposite is true
when y<1{ Eventually, as the thickness of

ny=58

t T S S W N + Lonant 4 bl gy
,004 .006 008 ,01 .02 .03 .04 ,05.06 .08 .1

(Af wasi
B T:roygg el

Variation of bubble radius with
time for Ja=10, =1, and vy=.2, 1.,
and 5, illustrating the change in
growth rate as time advances. As
>0, n+1/2. '

Fig. 8.

the Tiquidl layer becomes very small compared
to the thermal boundary layer thickness, the
contribution of liquidl to the thermal resis-
tance becomes negligible and the temperature
field resembles that which would exist for a
bubble growing in an infinite medium of 1liqg-
uid2. As a result, we again have n+1/2 as
" shown in Fig. 8.

CONCLUSIONS

A numerical solution for bubble growth in
a suspended volatile liquid droplet immersed
in a hot immiscible non-volatile field liquid
was obtained which takes into account the
temperature and velocity fields both within
the droplet and in the ambient 1liquid.
Results showed that the vapor bubble in the
droplet grows according to the classical heat
transfer growth law corresponding to a bubble
in an infinite medium until the thermal boun-
dary layer reaches the 1iquidl/liquid2 inter-
face. Beyond this time, the field liquid in-
fluences bubble growth, and the temporal
variation of bubble radius deviates from the
classical result. Though the growth rate may
deviate from the classical growth law as a
result of thermal boundary layer penetration
into the field liquid, eventually the bubble
growth law conforms to the classical result
for sufficiently large times.
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NOTAT ION

Coefficients in transformed energy
equation defined in equations (25)
and (26)

C Specific heat

hP Latent heat of vaporization of
liquid 1 at Tg

Ja Jakob number

Thermal conductivity

Ambient pressure

Radial coordinate

Radius of bubble

Radial velocty of bubble wall
Droplet radius

Initial droplet radius

Time

Temperature

Saturated vapor temperature of
liquid 1 at Py

Homogeneous nucleation temperature
of Tiquid 1 at Pg

Velocity

A,B,C

(=]

w

- o—'l ~ =t NPT 5 VN

jop]
=
"]
o
=

Thermal diffusivity

Density ratio (py-py)/py
Diffusivity ratio ay/o
Conductivity ratio k,/k;
Transformed radial coordinate
Density

Transformed time coordinate

AT 3N MR

Subscripts

liquid 1
liquid 2
vapor 1
position Tevel descriptor

A N

Superscripts

n Time level descriptor
- Indicates nondimensional
quantity
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